Show that the relation R in the set R of real numbers, defined as $R = \{(a,b) : a \le b^2\}$ is neither reflexive nor symmetric nor transitive.

[Because $3 < 2^2 = 4$ and $2 < (1.5)^2 = 2.25$]

Solution:

$$R = \left\{ (a,b) : a \le b^2 \right\}$$

$$\left(\frac{1}{2}, \frac{1}{2}\right) \notin R \text{ because } \frac{1}{2} > \left(\frac{1}{2}\right)^2$$

∴ R is not reflexive.

$$(1,4) \in R$$
 as $1 < 4$. But 4 is not less than 1^2 .

$$(4,1) \notin R$$

$$3 > (1.5)^2 = 2.25$$

 $\therefore (3, 1.5) \notin R$

 $(3,2)(2,1.5) \in R$

∴ R is not transitive.

R is neither reflective nor symmetric nor transitive.